콘텐츠 바로가기
본문 바로가기

YES24 카테고리 리스트

YES24 유틸메뉴

Global YES24안내보기

Global YES24는?

K-POP/K-Drama 관련상품(음반,도서,DVD)을
영문/중문 으로 이용하실 수 있습니다.

Korean wave shopping mall, sell the
K-POP/K-Drama (CD,DVD,Blu-ray,Book) We aceept PayPal/UnionPay/Alipay
and support English/Chinese Language service

English

作为出售正规 K-POP/K-Drama 相关(CD,图书,DVD) 韩流商品的网站, 支持 中文/英文 等海外结账方式

中文

검색


어깨배너

2월 혜택 모음
1/6

빠른분야찾기



그래프 신경망 입문 eBook
미리보기 공유하기
소득공제 PDF
eBook

그래프 신경망 입문

[ PDF ]
즈위안 리우, 지에 저우 저/정지수 | 에이콘출판사 | 2022년 05월 17일 | 원서 : Introduction to Graph Neural Networks 첫번째 구매리뷰를 남겨주세요. | 판매지수 216 판매지수란?
상품 가격정보
정가 16,000원
판매가 16,000 (종이책 정가 대비 20% 할인)
YES포인트
추가혜택쿠폰 및 사은품(1종)
추가혜택쿠폰 쿠폰받기
  • 주문금액대별 할인쿠폰
배송안내_바로읽기
배송안내 바로가기
구매 시 참고사항
구매 시 참고사항
  • 2020.4.1 이후 구매 도서 크레마터치에서 이용 불가, PC 뷰어 이용시 하이라이트 기능 사용 불가
  • eBook 상품은 배송되지 않으며, 구매 후 지원기기에서 바로 읽을 수 있습니다. eBook 이용 안내
  • 구매 후 바로 읽기 eBook 이용안내
  • 이용기간 제한없음
  • 문화비소득공제 신청가능
1/4
광고 AD

품목정보

품목정보
출간일 2022년 05월 17일
이용안내
  •  배송 없이 구매 후 바로 읽기 eBook 이용안내
  • 이용기간 제한없음
  •  TTS 가능 TTS 안내
  •  저작권 보호를 위해 인쇄 기능 제공 안함
지원기기 크레마 /PC(윈도우) /아이폰 /아이패드 /안드로이드폰 /안드로이드패드 /전자책단말기(일부 기기 사용 불가) /PC(Mac)
파일/용량 PDF(DRM) | 20.70MB 파일/용량 안내
페이지 수 약 158쪽 글자 수/페이지 수 안내
ISBN13 9791161756530

관련분류

카테고리 분류

이 상품의 이벤트 (5개)

소개

목차

상세 이미지

상세 이미지 1

저자 소개 (3명)

칭화대학교 컴퓨터공학과 부교수다. 칭화대학교 컴퓨터공학과에서 2006년에 학사, 2011년에 박사학위를 받았다. 관심 연구 분야는 자연어 처리와 소셜 컴퓨팅이다. IJCAI, AAAI, ACL, EMNLP를 포함해 학회와 저널에 60편 이상의 논문을 발표했다. 칭화대학교 컴퓨터공학과 부교수다. 칭화대학교 컴퓨터공학과에서 2006년에 학사, 2011년에 박사학위를 받았다. 관심 연구 분야는 자연어 처리와 소셜 컴퓨팅이다. IJCAI, AAAI, ACL, EMNLP를 포함해 학회와 저널에 60편 이상의 논문을 발표했다.
칭화대학교 컴퓨터공학과 석사 2년차 학생이다. 칭화대학교에서 2016년에 학사학위를 받았다. 관심 연구 분야는 그래프 신경망과 자연어 처리다. 칭화대학교 컴퓨터공학과 석사 2년차 학생이다. 칭화대학교에서 2016년에 학사학위를 받았다. 관심 연구 분야는 그래프 신경망과 자연어 처리다.
카이스트 수리과학과에서 학사, 석사, 박사학위를 받으며, 세부 전공은 그래프 이론이다. 졸업 후 삼성SDS에서 AI 기반 빅데이터 분석 플랫폼 브라이틱스(Brightics)를 만들었다. 그 후 왓챠에서 개인화 추천 모델을 연구하고 개발했다. 현재는 네이버 클로바에서 서비스에 적용할 머신러닝 모델도 만들고 논문도 쓰며 재미있는 시간을 보내고 있다. 관심 있는 분야는 추천 시스템이고 관심 있는 방법론은 그래프 신경망... 카이스트 수리과학과에서 학사, 석사, 박사학위를 받으며, 세부 전공은 그래프 이론이다. 졸업 후 삼성SDS에서 AI 기반 빅데이터 분석 플랫폼 브라이틱스(Brightics)를 만들었다. 그 후 왓챠에서 개인화 추천 모델을 연구하고 개발했다. 현재는 네이버 클로바에서 서비스에 적용할 머신러닝 모델도 만들고 논문도 쓰며 재미있는 시간을 보내고 있다. 관심 있는 분야는 추천 시스템이고 관심 있는 방법론은 그래프 신경망을 사용하는 모델들이다. 네이버 뉴스(http://naver.me/x7vVgcAZ)와 유튜브(https://youtu.be/jFDxoOq1EBI)에서 찾아볼 수 있다.

만든 이 코멘트

저자, 역자, 편집자를 위한 공간입니다. 독자들에게 전하고 싶은 말씀을 남겨주세요. 코멘트 쓰기
접수된 글은 확인을 거쳐 이 곳에 게재됩니다.
독자 분들의 리뷰는 리뷰 쓰기를, 책에 대한 문의는 1:1 문의를 이용해 주세요.

출판사 리뷰

이 책에서 다루는 내용

그래프는 물리적 시스템 모델링, 분자 구조 핑거프린트 학습, 트래픽 네트워크 제어, 소셜 네트워크의 친구 추천처럼 복잡하게 얽혀 있는 실생활 문제들을 표현하기에 적합한 데이터 구조다. 이런 문제들을 해결하기 위해서는 엄청난 수의 관계 정보를 갖고 있는 비유클리드 그래프 데이터를 다뤄야 하는데, 전통적인 딥러닝 모델인 합성곱 신경망이나 순환 신경망으로 해결하기에는 한계가 있다. 일반적으로 그래프의 노드는 네트워크 임베딩 방법 같은 비지도 표현 학습에서는 잘 다룰 수 없는 유용한 특성 정보를 담고 있다. 그래프 신경망은 특성 전파와 결합으로 노드의 특성 정보와 그래프의 구조를 결합해 그래프를 잘 표현하게끔 만들어졌다. 확실한 성능과 높은 해석 가능성 덕분에 그래프 신경망이 최근 다양한 그래프 분석에 적용되고 있다.

이 책은 그래프 신경망의 기본 개념, 모델, 응용을 포괄적으로 다룬다. 가장 기본이 되는 그래프 신경망과 그 변형인 그래프 합성곱 네트워크(graph convolutional network), 그래프 순환 네트워크(graph recurrent network), 그래프 어텐션 네트워크(graph attention network), 그래프 잔차 네트워크(graph residual network)를 설명한다. 다양한 그래프 타입에 맞는 변형 모델과 심화된 학습 모델도 제공된다. 그래프 신경망이 적용되는 분야를 구조적, 비구조적, 기타 시나리오로 분류한 다음 각각을 해결하는 방법을 알려준다. 마지막 장에서는 관련된 오픈소스와 앞으로의 전망을 다룬다.

이 책의 구성

1장에서 개요를 살펴본 후 2장에서는 수학과 그래프 이론에 대한 기초 지식을 소개한다. 3장에서 신경망의 기초를 살펴보고, 4장에서 GNN의 기본 형태를 알아본다. 5장, 6장, 7장, 8장에서 네 종류의 모델을 소개한다. 9장과 10장에서 다른 그래프 종류의 변형과 고급 학습 방법을 설명한다. 그리고 11장에서 일반적인 GNN 프레임워크를 설명한다. 12장, 13장, 14장에서 구조적 시나리오, 비구조적 시나리오, 그 외 시나리오에 대한 GNN의 응용을 알아본다. 15장에서는 몇 가지 오픈소스를 제공한다.

지은이의 말

딥러닝은 컴퓨터 비전, 자연어 처리 등 많은 분야에서 유망한 발전을 이뤘다. 이런 작업에서 사용되는 데이터는 일반적으로 유클리드 영역에서 표현된다. 하지만 물리적 시스템 모델링, 분자 핑거프린트 학습, 단백질 인터페이스 예측 등 원소 간의 풍부한 관계 정보를 포함하는 비유클리드 그래프 데이터를 다루는 작업들도 많다. 그래프 신경망(GNN, Graph Neural Network)은 그래프에서 작동하는 딥러닝 기반 방법이다. 믿을 만한 성능과 높은 해석 가능성 때문에 그래프 신경망은 최근 널리 적용되는 그래프 분석 방법이다.

이 책은 그래프 신경망의 기본 개념과 모델, 응용 분야를 포괄적으로 다룬다. 수학과 신경망의 기초부터 시작한다. 1장에서는 독자에게 일반적인 개요를 제공하기 위해 GNN의 기본 개념을 소개한다. 그 후 그래프 합성곱 네트워크, 그래프 순환 네트워크, 그래프 어텐션 네트워크, 그래프 잔차 네트워크, 몇 가지 일반적인 프레임워크 등 GNN의 여러 가지 변형을 소개한다. 이 변형들은 합성곱 신경망, 순환 신경망, 어텐션 메커니즘, 스킵 커넥션 등 딥러닝 기술을 그래프로 일반화한다. 더 나아가 구조적 시나리오(물리학, 화학, 지식 그래프), 비구조적 시나리오(이미지, 텍스트), 그 외 시나리오(생성 모델, 조합적 최적화) 등 다양한 분야에 적용할 수 있는 GNN을 소개한다. 마지막으로 관련된 데이터셋, 오픈소스 플랫폼, GNN의 구현을 알려준다.

옮긴이의 말

그래프 신경망은 2017년, 2018년부터 활발하게 연구됐으며 지금도 많은 사람이 한계를 극복하고자 많은 시도와 노력을 하고 있습니다. 다양한 분야에서 놀라운 성능을 보여주고 있으며, 특히 그래프 신경망으로 향기, 교통량 등을 예측할 수 있다는 논문들은 신선한 충격으로 다가왔습니다. 그래프 신경망은 논문에서만 이뤄지는 연구가 아니라 핀터레스트, 우버, 네이버 등 실제로 많은 회사에서 서비스에 적용할 만큼 검증된 모델입니다.

이 책은 딥러닝을 알고 있는 사람들을 대상으로 쓰여서 딥러닝을 처음 접하는 분들은 책이 친절하지 않다고 느끼실 수 있습니다. 하지만 그래프 신경망의 변형과 응용 분야를 다양하게 소개하고 있어서 목차를 보고 본인의 기존 관심사와 겹치는 부분만 읽는 방법도 좋을 것으로 생각됩니다. 책을 읽다가 특정 모델을 더 깊게 알고 싶어지면 논문을 직접 읽는 것을 추천합니다. 딥러닝을 아는 사람들이 그래프 신경망을 시작하기 위한 지침서 정도로 생각해주시면 좋을 것 같습니다. 이 책으로 많은 사람이 그래프 신경망에 흥미를 느끼길 바랍니다.

eBook 회원리뷰 (0건)

매주 10건의 우수리뷰를 선정하여 YES포인트 3만원을 드립니다.
3,000원 이상 구매 후 리뷰 작성 시 일반회원 300원, 마니아회원 600원의 YES포인트를 드립니다.
(eBook은 다운로드 후 작성한 리뷰에만 YES포인트 지급) 리뷰/한줄평 정책 자세히 보기
리뷰쓰기

등록된 리뷰가 없습니다.

첫번째 리뷰어가 되어주세요.

한줄평 (0건)

1,000원 이상 구매 후 한줄평 작성 시 일반회원 50원, 마니아회원 100원의 YES포인트를 드립니다.
(CD/LP, DVD/Blu-ray, 패션 및 판매금지 상품, 예스24 앱스토어 상품 제외) 리뷰/한줄평 정책 자세히 보기
0/50

등록된 한줄평이 없습니다.

첫번째 한줄평을 남겨주세요.

배송/반품/교환 안내

배송 안내

배송 안내
배송 구분 구매 후 즉시 다운로드 가능
  •  배송비 : 무료배송

반품/교환 안내

※ 상품 설명에 반품/교환과 관련한 안내가 있는경우 아래 내용보다 우선합니다. (업체 사정에 따라 달라질 수 있습니다)

반품/교환 안내
반품/교환 방법
  •  마이페이지 > 반품/교환 신청 및 조회, 1:1 문의, 고객만족센터(1544-3800), 중고샵(1566-4295)
  •  판매자 배송 상품은 판매자와 반품/교환이 협의된 상품에 한해 가능합니다.
반품/교환 가능기간
  •  출고 완료 후 10일 이내의 주문 상품
  •  디지털 콘텐츠인 eBook의 경우 구매 후 7일 이내의 상품
  •  중고상품의 경우 출고 완료일로부터 6일 이내의 상품 (구매확정 전 상태)
반품/교환 비용
  •  고객의 단순변심 및 착오구매일 경우 상품 반송비용은 고객 부담임
  •  직수입양서/직수입일서중 일부는 변심 또는 착오로 취소시 해외주문취소수수료 20%를 부과할수 있음

    단, 아래의 주문/취소 조건인 경우, 취소 수수료 면제

    •  오늘 00시 ~ 06시 30분 주문을 오늘 오전 06시 30분 이전에 취소
    •  오늘 06시 30분 이후 주문을 익일 오전 06시 30분 이전에 취소
  •  박스 포장은 택배 배송이 가능한 규격과 무게를 준수하며, 고객의 단순변심 및 착오구매일 경우 상품의 반송비용은 박스 당 부과됩니다.
반품/교환 불가사유
  •  소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
  •  소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우 : 예) 화장품, 식품, 가전제품, 전자책 단말기 등
  •  복제가 가능한 상품 등의 포장을 훼손한 경우 : 예) CD/LP, DVD/Blu-ray, 소프트웨어, 만화책, 잡지, 영상 화보집
  •  소비자의 요청에 따라 개별적으로 주문 제작되는 상품의 경우
  •  디지털 컨텐츠인 eBook, 오디오북 등을 1회 이상 다운로드를 받았을 경우
  •  eBook 대여 상품은 대여 기간이 종료 되거나, 2회 이상 대여 했을 경우 취소 불가
  •  중고상품이 구매확정(자동 구매확정은 출고완료일로부터 7일)된 경우
  •  LP상품의 재생 불량 원인이 기기의 사양 및 문제인 경우 (All-in-One 일체형 일부 보급형 오디오 모델 사용 등)
  •  시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우
  •  전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에 해당되는 경우
소비자 피해보상
  •  상품의 불량에 의한 반품, 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은 소비자분쟁해결기준(공정거래위원회 고시)에 준하여 처리됨
환불 지연에 따른 배상
  •  대금 환불 및 환불 지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의 소비자 보호에 관한 법률에 따라 처리
맨위로
예스이십사(주)
서울시 영등포구 은행로 11, 5층~6층(여의도동,일신빌딩) 대표 : 김석환   개인정보보호책임자 : 권민석 yes24help@yes24.com 사업자등록번호 : 229-81-37000   통신판매업신고 : 제 2005-02682호 사업자 정보확인 호스팅 서비스사업자 : 예스이십사(주)
YES24 수상내역 정보보호 관리체계 ISMS인증획득 개인정보보호 우수사이트
소비자피해보상보험 서울보증보험
고객님은 안전거래를 위해 현금 등으로 결제 시 저희 쇼핑몰에서 가입한 구매안전서비스를 이용하실 수 있습니다. 서비스가입사실 확인
EQUUS2