콘텐츠 바로가기
본문 바로가기

YES24 카테고리 리스트

YES24 유틸메뉴

Global YES24안내보기

Global YES24는?

K-POP/K-Drama 관련상품(음반,도서,DVD)을
영문/중문 으로 이용하실 수 있습니다.

Korean wave shopping mall, sell the
K-POP/K-Drama (CD,DVD,Blu-ray,Book) We aceept PayPal/UnionPay/Alipay
and support English/Chinese Language service

English

作为出售正规 K-POP/K-Drama 相关(CD,图书,DVD) 韩流商品的网站, 支持 中文/英文 等海外结账方式

中文

검색


어깨배너

2월 혜택 모음
1/6

빠른분야찾기



추천 시스템의 통계 기법
미리보기 공유하기
소득공제 에이콘 데이터 과학 시리즈

추천 시스템의 통계 기법

실생활 추천 문제에 적용해보는 다양한 통계 기법

디팍 아가왈, 비 청 첸 저/최영재 | 에이콘출판사 | 2022년 05월 31일 | 원서 : Statistical Methods for Recommender Systems 첫번째 구매리뷰를 남겨주세요. | 판매지수 738 판매지수란?
상품 가격정보
정가 33,000원
판매가 29,700 (10% 할인)
YES포인트
배송안내
배송안내 바로가기

구매 시 참고사항
구매 시 참고사항

판매중

수량
  • 국내배송만 가능
  • 최저가 보상
  • 문화비소득공제 신청가능
1/4
광고 AD

품목정보

품목정보
발행일 2022년 05월 31일
쪽수, 무게, 크기 372쪽 | 152*228*21mm
ISBN13 9791161756462
ISBN10 1161756469

관련분류

이 상품의 이벤트 (11개)

책소개

  •  책의 일부 내용을 미리 읽어보실 수 있습니다. 미리보기

목차

저자 소개 (3명)

빅데이터 분석가로 웹 애플리케이션의 검색 능력 개선에 기여한 최신 머신러닝과 통계 기법을 다년간 개발 및 배포한 경험을 가지고 있다. 또한 어려운 빅데이터 문제, 특히 추천 시스템과 컴퓨터 광고 분야의 문제를 해결하기 위한 연구를 주도했다. 미국통계협회(American Statistical Association)의 선임 연구원이며 통계 분야 최고권위 학술지의 편집장을 역임하고 있다. 빅데이터 분석가로 웹 애플리케이션의 검색 능력 개선에 기여한 최신 머신러닝과 통계 기법을 다년간 개발 및 배포한 경험을 가지고 있다. 또한 어려운 빅데이터 문제, 특히 추천 시스템과 컴퓨터 광고 분야의 문제를 해결하기 위한 연구를 주도했다. 미국통계협회(American Statistical Association)의 선임 연구원이며 통계 분야 최고권위 학술지의 편집장을 역임하고 있다.
최신 추천 시스템 개발에 많은 실무 및 연구 경험을 가진 선구적인 기술자다. 링크드인 홈페이지와 모바일 피드, 야후! 홈페이지, 야후! 뉴스 그 외 여러 사이트의 중심이 되는 추천 알고리듬의 핵심 설계자다. 연구 분야로는 추천 시스템, 데이터 마이닝(data mining), 머신러닝, 빅데이터 분석 등이 있다. 최신 추천 시스템 개발에 많은 실무 및 연구 경험을 가진 선구적인 기술자다. 링크드인 홈페이지와 모바일 피드, 야후! 홈페이지, 야후! 뉴스 그 외 여러 사이트의 중심이 되는 추천 알고리듬의 핵심 설계자다. 연구 분야로는 추천 시스템, 데이터 마이닝(data mining), 머신러닝, 빅데이터 분석 등이 있다.
IT 회사에서 근무하면서 소프트웨어 제품 품질에 관심을 가져왔다. 현재 소프트웨어 공학 관련 강의를 하고 있으며, 어떻게 하면 사용자가 좀 더 신뢰할 수 있고 안심하며 사용할 수 있는 소프트웨어를 만들지 고민 중이다. 소프트웨어 관련 국제 표준과 여러 지식 체계에 참여하고 있으며, 최근에는 어떻게 하면 누구나 신뢰하면서 사용할 수 있는 머신러닝 모델을 만들 수 있는지에 관심을 갖고 있다. 자율주행 자동차 등 인공... IT 회사에서 근무하면서 소프트웨어 제품 품질에 관심을 가져왔다. 현재 소프트웨어 공학 관련 강의를 하고 있으며, 어떻게 하면 사용자가 좀 더 신뢰할 수 있고 안심하며 사용할 수 있는 소프트웨어를 만들지 고민 중이다. 소프트웨어 관련 국제 표준과 여러 지식 체계에 참여하고 있으며, 최근에는 어떻게 하면 누구나 신뢰하면서 사용할 수 있는 머신러닝 모델을 만들 수 있는지에 관심을 갖고 있다. 자율주행 자동차 등 인공지능이 인간의 삶에 줄 수 있는 많은 가치를 실현하기 위해서는 모델이 가진 한계를 이해하고, 인공지능이 왜, 무언가를, 어떤 방식으로 예측했는지 이해할 필요가 있다고 생각한다.

만든 이 코멘트

저자, 역자, 편집자를 위한 공간입니다. 독자들에게 전하고 싶은 말씀을 남겨주세요. 코멘트 쓰기
접수된 글은 확인을 거쳐 이 곳에 게재됩니다.
독자 분들의 리뷰는 리뷰 쓰기를, 책에 대한 문의는 1:1 문의를 이용해 주세요.

출판사 리뷰

이 책의 구성

1부에서는 추천 시스템 문제를 해결하기 어려운 이유와 해결에 사용하는 주요 개념, 필요한 배경지식 등을 소개한다. 2장에서는 과거 추천 시스템을 개발할 때 사용했던 전통적인 방법을 짚어본다. 사용자와 항목에 관한 정보를 특성 벡터로 사용해서 유사도 함수, 표준 지도 학습, 협력 필터링을 통해 사용자-항목 페어 점수를 산정한다. 전통적인 기법에서는 보통 추천 시스템에서 나타나는 탐색-이용 딜레마를 무시한다. 3장에서는 이 문제가 왜 중요한지 살펴보고 이후 장에서 문제를 해결하기 위해 사용하는 주요 개념을 소개한다. 4장에서는 기술적 해결책을 다루기에 앞서 다양한 추천 알고리듬의 성능을 평가할 때 사용할 수 있는 여러 기법을 다룬다.

2부에서는 흔히 발생하는 문제의 해결 방법을 자세히 다룬다. 5장에서는 다양한 문제 상황을 소개하고 시스템 아키텍처 예시를 제공하며, 이어지는 6, 7, 8장에서는 일반적으로 나타날 수 있는 문제 상황 한 가지씩 다룬다. 6장에서는 최고-인기 항목 추천으로 발생할 수 있는 문제의 해결책을 알아보는데 특히 탐색-이용 측면에 집중한다. 7장에서는 특성-기반 회귀를 통한 맞춤형 추천을 다루면서 최신 사용자-항목 상호작용 데이터를 활용해서 좋은 솔루션으로 빠르게 발전할 수 있게 모델을 지속해서 업데이트하는 방법을 집중적으로 다룬다. 8장에서는 7장에서 소개한 기법을 특성-기반 회귀에서 요인 모델(행렬 분해)로 확장하게 되고, 동시에 요인 모델에서 나타나는 콜드-스타트 문제에 대한 자연스러운 해결책을 알아본다.

3부에서는 고급 주제 3가지를 다룬다. 9장에서는 잠재 디리클레 할당, LDA 주제 모델 사용하는 수정 행렬 분해 모델을 가지고 항목과 사용자 집단에서 나타나는 주제를 동시에 식별하는 분해 모델을 다양한 주제로 소개한다. 10장에서는 추천된 항목이 사용자와 밀접하게 관련돼야 할 뿐만 아니라 문맥과도 관련성을 가져야 할 때(예: 사용자가 현재 읽고 있는 뉴스 기사와 관련된 항목을 추천하는 경우) 발생하는 문맥-의존 추천 문제를 살펴본다. 11장에서는 수익과 같이 하나의 목표를 최대로 늘릴 때 다른 목표의 손실이 제한된(예: 클릭 수 감소가 5% 이하) 경우인 제한된 최적화 접근법 기반 다-목적 최적화를 위한 기본적인 프레임워크를 다룬다.

지은이의 말

컴퓨터 과학, 머신러닝, 통계학 등 여러 분야의 추천 시스템에 관한 책이 많지만 주로 특정 부분에만 집중하며, 모든 통계 문제나 그것들이 서로 어떻게 연관되는지 포괄적으로 다루고 있지는 않다. 야후!와 링크드인에서 시스템을 개발하면서 문제를 깨닫게 됐다. 통계학이나 머신러닝에서 관심은 아웃-오브-샘플(out-of-sample) 데이터를 대상으로 한 예측 오차가 가장 낮은 모델을 만드는 것이다. 하지만 이런 접근 방식은 현실적으로 중요한 모든 요소를 다루지 못한다. 통계학적 측면에서 추천 시스템은 다차원 순차 프로세스로 실험 설계 등 문제를 연구하는 것이 훌륭한 통계 모델을 개발하는 것만큼 중요하다. 실제로 두 가지는 서로 밀접한 관계가 있다. 효율적인 디자인은 차원 수의 저주를 잘 다루는 모델을 가지고 있어야 한다. 또한 지금까지 출판된 내용은 대부분 하나의 요소, 가령 영화 평점, 구매 내역, 클릭률(click rate) 등에 반응하는 모델의 구성을 얘기하고 있다.

페이스북, 링크드인, 트위터와 같은 소셜미디어의 등장으로 다양한 반응을 사용할 수 있게 됐다. 예를 들어, 누군가는 뉴스 추천 애플리케이션을 위해 클릭률, 공유 비율, 트윗 비율 등을 동시에 모델링하고 싶을 수도 있다. 이처럼 여러 변수에 반응하는 모델은 구성하기가 쉽지 않다. 다변수 예측을 할 수 있는 기반이 있다고 하더라도 추천에 필요한 유틸리티 함수는 어떻게 구성해야 하는가? 클릭률보다 공유율을 최적화하는 것이 더 중요한가? 문제의 답은 도메인 전문가와의 긴밀한 협업을 통한 유틸리티 매개변수 일부 도출과 다목적 최적화로 얻을 수 있다.

이 책의 목적은 추천 시스템과 관련된 이런 문제를 종합적으로 살펴보는 것이다. 물론 기본적인 목적은 적응형 순차 디자인(멀티 암드 밴딧 기법), 이중선형 랜덤-효과 모델(행렬 분해), 최신 분산형 컴퓨팅 인프라를 활용한 확장형 모델 등 현재 최신 통계 기법에 관해 자세히 알아본다. 업계에서 이런 대형 시스템을 구성했던 오랜 경험을 바탕으로 문제를 통계, 머신러닝, 컴퓨터 과학 커뮤니티와 공유하기 위한 목적으로 썼다. 이 책은 이론과 실무의 차이를 메우는 데 도움이 될 것이다. 문제를 마주친 사람에게는 연관된 통계 문제를 충분히 이해할 수 있게 해주고, 모델을 구성하고 있는 사람에게는 실제로 적용했을 때 발생하는 복잡한 통계 문제를 깊이 이해할 수 있게 해 줄 것이다.

옮긴이의 말

1950년대에 인공지능이라는 용어가 처음 소개됐을 때까지만 해도 소수의 전문가가 복잡한 수식과 많은 연산 자원을 가지고 연구하던 영역이었다. 하지만 최근 관련 하드웨어의 발전과 여러 기업이나 단체에서 제공하는 오픈소스 도구를 활용해 누구라도 필요한 도구를 간단하게 설치하고 딥러닝을 직접 경험해 볼 수 있다. 오늘날 딥러닝 관련 기술은 매우 빠르게 발전하고 있다. 하루만에 새로운 기술이 개발되고 있고, 지금 배우는 기법이나 도구가 1년 뒤에도 여전히 쓰일 것인지 알 수 없다. 하지만 딥러닝이 기본적으로 어떻게 구현되는지, 또 근간을 이루는 수학적인 개념이 실습을 통해 익숙해지면 차후 새로운 기법과 도구를 더욱 쉽게 활용할 수 있다. 머신러닝, 딥러닝 분야의 대부분 용어는 영어로 번역이 필요하지만, 국내에서 활발하게 사용된 지 어느 정도 시간이 지났기 때문에 원문 그대로 사용했다. 또한 원문의 의미를 해치지 않는 선에서 업계에서 사용하는 용어를 쓰고자 노력했다.

회원리뷰 (0건)

매주 10건의 우수리뷰를 선정하여 YES포인트 3만원을 드립니다.
3,000원 이상 구매 후 리뷰 작성 시 일반회원 300원, 마니아회원 600원의 YES포인트를 드립니다.
(CD/LP, DVD/Blu-ray, 패션 및 판매금지 상품, 예스24 앱스토어 상품 제외) 리뷰/한줄평 정책 자세히 보기
리뷰쓰기

등록된 리뷰가 없습니다.

첫번째 리뷰어가 되어주세요.

한줄평 (0건)

1,000원 이상 구매 후 한줄평 작성 시 일반회원 50원, 마니아회원 100원의 YES포인트를 드립니다.
(CD/LP, DVD/Blu-ray, 패션 및 판매금지 상품, 예스24 앱스토어 상품 제외) 리뷰/한줄평 정책 자세히 보기
0/50

등록된 한줄평이 없습니다.

첫번째 한줄평을 남겨주세요.

배송/반품/교환 안내

배송 안내

배송 안내
배송 구분 YES24 배송
  •  배송비 : 무료배송
포장 안내

안전하고 정확한 포장을 위해 CCTV를 설치하여 운영하고 있습니다.

고객님께 배송되는 모든 상품을 CCTV로 녹화하고 있으며, 철저한 모니터링을 통해 작업 과정에 문제가 없도록 최선을 다 하겠습니다.

목적 : 안전한 포장 관리
촬영범위 : 박스 포장 작업

  • 포장안내1
  • 포장안내2
  • 포장안내3
  • 포장안내4

반품/교환 안내

※ 상품 설명에 반품/교환과 관련한 안내가 있는경우 아래 내용보다 우선합니다. (업체 사정에 따라 달라질 수 있습니다)

반품/교환 안내
반품/교환 방법
  •  마이페이지 > 반품/교환 신청 및 조회, 1:1 문의, 고객만족센터(1544-3800), 중고샵(1566-4295)
  •  판매자 배송 상품은 판매자와 반품/교환이 협의된 상품에 한해 가능합니다.
반품/교환 가능기간
  •  출고 완료 후 10일 이내의 주문 상품
  •  디지털 콘텐츠인 eBook의 경우 구매 후 7일 이내의 상품
  •  중고상품의 경우 출고 완료일로부터 6일 이내의 상품 (구매확정 전 상태)
반품/교환 비용
  •  고객의 단순변심 및 착오구매일 경우 상품 반송비용은 고객 부담임
  •  직수입양서/직수입일서중 일부는 변심 또는 착오로 취소시 해외주문취소수수료 20%를 부과할수 있음

    단, 아래의 주문/취소 조건인 경우, 취소 수수료 면제

    •  오늘 00시 ~ 06시 30분 주문을 오늘 오전 06시 30분 이전에 취소
    •  오늘 06시 30분 이후 주문을 익일 오전 06시 30분 이전에 취소
  •  직수입 음반/영상물/기프트 중 일부는 변심 또는 착오로 취소 시 해외주문취소수수료 30%를 부과할 수 있음

    단, 당일 00시~13시 사이의 주문은 취소 수수료 면제

  •  박스 포장은 택배 배송이 가능한 규격과 무게를 준수하며, 고객의 단순변심 및 착오구매일 경우 상품의 반송비용은 박스 당 부과됩니다.
반품/교환 불가사유
  •  소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
  •  소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우 : 예) 화장품, 식품, 가전제품, 전자책 단말기 등
  •  복제가 가능한 상품 등의 포장을 훼손한 경우 : 예) CD/LP, DVD/Blu-ray, 소프트웨어, 만화책, 잡지, 영상 화보집
  •  소비자의 요청에 따라 개별적으로 주문 제작되는 상품의 경우
  •  디지털 컨텐츠인 eBook, 오디오북 등을 1회 이상 다운로드를 받았을 경우
  •  eBook 대여 상품은 대여 기간이 종료 되거나, 2회 이상 대여 했을 경우 취소 불가
  •  중고상품이 구매확정(자동 구매확정은 출고완료일로부터 7일)된 경우
  •  LP상품의 재생 불량 원인이 기기의 사양 및 문제인 경우 (All-in-One 일체형 일부 보급형 오디오 모델 사용 등)
  •  시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우
  •  전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에 해당되는 경우
소비자 피해보상
  •  상품의 불량에 의한 반품, 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은 소비자분쟁해결기준(공정거래위원회 고시)에 준하여 처리됨
환불 지연에 따른 배상
  •  대금 환불 및 환불 지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의 소비자 보호에 관한 법률에 따라 처리
맨위로
예스이십사(주)
서울시 영등포구 은행로 11, 5층~6층(여의도동,일신빌딩) 대표 : 김석환   개인정보보호책임자 : 권민석 yes24help@yes24.com 사업자등록번호 : 229-81-37000   통신판매업신고 : 제 2005-02682호 사업자 정보확인 호스팅 서비스사업자 : 예스이십사(주)
YES24 수상내역 정보보호 관리체계 ISMS인증획득 개인정보보호 우수사이트
소비자피해보상보험 서울보증보험
고객님은 안전거래를 위해 현금 등으로 결제 시 저희 쇼핑몰에서 가입한 구매안전서비스를 이용하실 수 있습니다. 서비스가입사실 확인
EQUUS4