콘텐츠 바로가기
본문 바로가기


YES24 카테고리 리스트

YES24 유틸메뉴

Global YES24안내보기

Global YES24는?

K-POP/K-Drama 관련상품(음반,도서,DVD)을
영문/중문 으로 이용하실 수 있습니다.

Korean wave shopping mall, sell the
K-POP/K-Drama (CD,DVD,Blu-ray,Book) We aceept PayPal/UnionPay/Alipay
and support English/Chinese Language service

English

作为出售正规 K-POP/K-Drama 相关(CD,图书,DVD) 韩流商品的网站, 支持 中文/英文 等海外结账方式

中文

검색


어깨배너

9월 전사 이벤트
북클럽 베타
곰돌이푸 프로모션
LPGA F/W 15%할인
추석 이벤트
편의점픽업 500P 적립
1/6

빠른분야찾기


윙배너

마우스를 올려주세요.
바로가기 OFF
 바로가기 OFF으로
접속하셨습니다.

YES24 바로가기 설치시 특가정보 및 할인혜택을 드립니다. 바로가기 설치하기

마케팅 텍스트 배너

웹진채널예스


처음 배우는 머신러닝
미리보기
소득공제

처음 배우는 머신러닝

기초부터 모델링, 실전 예제, 문제 해결까지

김승연, 정용주 | 한빛미디어 | 2017년 10월 01일 리뷰 총점8.0 정보 더 보기/감추기
내용
4점
편집/디자인
4점
회원리뷰(3건) | 판매지수 13044 판매지수란?
공유 페이스북 공유하기 트위터 공유하기 상품퍼가기 열기/닫기
상품 가격정보
정가 26,000원
판매가 23,400 (10% 할인)
YES포인트
추가혜택쿠폰 및 사은품(1종)
추가혜택쿠폰 쿠폰받기
  • 주문금액대별 할인쿠폰
결제혜택
결제혜택 카드/간편결제 혜택을 확인하세요 카드/간편결제 혜택 보기/감추기
카드할인 정보
네이버페이 네이버페이 네이버페이 1% 적립 (1% 적립) 자세히 보기
페이코포인트 페이코포인트 1.2% 적립 (건당 1만P 이내) 자세히 보기
구매 시 참고사항
구매 시 참고사항

판매중

수량
배송비 : 무료 배송비 안내
  • 해외배송 가능
  • 최저가 보상
  • 문화비소득공제 신청가능

상품정보

출간일 2017년 10월 01일
쪽수,무게,크기 376쪽 | 664g | 188*235*30mm
ISBN13 9791162240045
ISBN10 1162240040

이 상품과 관련 있는 이벤트 1

선착순 사은품 [대학생취준생] 2학기 준비! 새책으로 완벽대비! 새창 이벤트 분야 3,4,5,6 만원 금액별 사은품 증정(포인트 차감) 이벤트 기간 : 2018년 08월 22일 ~ 2018년 10월 14일

책소개

머신러닝 기초 이론, 실전 예제, 문제 해결까지 한 번에

이 책은 구글과 라쿠텐 머신러닝 개발자가 초보자 눈높이에서 머신러닝의 핵심 이론과 실용적인 예제를 제시합니다. 머신러닝 입문자가 이론을 바탕으로 강력한 성능을 내는 머신러닝 시스템을 구현하고 사용할 수 있도록 하는 것이 이 책의 목표입니다.

1부에서는 ‘머신러닝 기초 지식’, 2부에서는 ‘머신러닝 주요 모델’, 3부에서는 ‘머신러닝 시스템 구현’을 알려줍니다. 이론과 실무 예제와 해결 방법까지 모두 담고 있어 입문자뿐 아니라 이미 머신러닝을 현업에서 다루면서 체계적으로 실력을 다잡고자 하는 중고수에게도 최고의 선택이 될 겁니다.


상세이미지

저자 소개

작가파일보기 관심작가알림 신청 저 : 김승연

막연히 인간이 무엇인지 데이터를 통해 이해하고 싶다며 컴퓨터공학과에 들어간 이후 머신러닝과 소프트웨어 개발의 길을 걷고 있다. 서울대학교에서 컴퓨터공학부를 마치고 조지아 공과대학에서 효율적인 문서의 표현형 학습에 대한 머신러닝을 연구하여 컴퓨터 과학 석사와 박사 학위를 취득했다. 현재 구글 리서치에 소속되어 모바일 환경에서의 머신러닝을 주제로 연구 개발하고 있다.

작가파일보기 관심작가알림 신청 저 : 정용주

서울대학교에서 컴퓨터공학과 고고미술사학을 전공하면서 발굴 데이터의 전산 분석 강좌를 통해 머신러닝의 가능성을 체험한 후 도쿄대학에서 머신러닝을 이용한 웹 스팸 검출에 관한 연구로 정보이공학 석사와 박사 학위를 취득했다. 그 후 일본 전자상거래기업 라쿠텐에서 데이터 분석 및 부정사용 검출에 종사했다. 현재는 스탠퍼드에서 1년의 방문연구원 생활 후 라쿠텐 미국 지사에서 데이터 분석을 담당하고 있다.

목차

[Part 1 머신러닝 기초 지식]

1장. 머신러닝 시작하기
__1.1 머신러닝 소개
__1.2 머신러닝을 이해하는 데 필요한 배경 지식
__1.3 머신러닝 발전사
__1.4 머신러닝의 분류
__1.5 마치며


2장. 머신러닝의 주요 개념
__2.1 모델 : 문제를 바라보는 관점
__2.2 손실함수
__2.3 최적화 : 실제로 문제를 푸는 방법
__2.4 모델 평가 : 실제 활용에서 성능을 평가하는 방법
__2.5 마치며

[Part 2 머신러닝 주요 모델]

3장. 데이터와 문제
__3.1 데이터형
__3.2 데이터양과 품질
__3.3 데이터 표준화
__3.4 문제 유형
__3.5 마치며

4장. 구매 이력 데이터를 이용한 사용자 그룹 만들기
__4.1 군집화
__4.2 K-중심 군집화
__4.3 계층적 군집화
__4.4 밀도 기반 군집화
__4.5 유사도 계산
__4.6 마치며

5장. 문서 분석 시스템 만들기
__5.1 문서 분류 시스템 만들기
__5.2 토픽 모델링
__5.3 문법 분석
__5.4 단어 임베딩 학습 - word2vec
__5.5 마치며

6장. 영화 추천 시스템 만들기
__6.1 영화 추천 시스템
__6.2 유사도 계산
__6.3 내용 기반 추천 시스템
__6.4 협업 필터링
__6.5 표준화
__6.6 마치며
... 펼처보기

출판사 리뷰

★ 이 책에서 다루는 내용
이 책은 머신러닝 입문자가 알아야 하는 머신러닝의 전반적인 내용을 다룹니다. 여러분은 머신러닝이 왜 쓸모 있고 어떤 모델과 문제가 있는지, 실무에서 어떻게 사용하는지, 머신러닝의 다양한 문제를 어떻게 해결할 수 있는지, 프로그램 코드를 어떻게 만드는지 알게 될 겁니다.

[1부 머신러닝 기초 지식]
머신러닝과 딥러닝이 무엇이고 어떤 분류와 어떤 개념이 있는지 알아봅니다. 1부의 기본 개념은 3부의 실습에서 유용하게 사용되므로 정확히 알고 가는 것이 좋습니다.

-1장 머신러닝 시작하기
머신러닝의 큰 그림을 이해하는 데 도움이 되는 내용을 소개합니다. 머신러닝과 딥러닝이 무엇인지, AI와 다른 관련 분야들과는 어떠한 관계를 갖고 있으며 어떻게 분류하는지 설명합니다.

- 2장 머신러닝의 주요 개념
머신러닝의 주요 개념을 설명합니다. 이론적인 부분을 최대한 쉽고 실용적으로 설명했습니다. 이 장을 읽고 나면 머신러닝을 도입했을 때 문제를 어떻게 바라보고 어떻게 표현하며 어떻게 해결 방법을 찾는지, 그리고 예측에 어떻게 사용하는지에 대해 알 수 있습니다. 이들 개념은 성능에 커다란 영향을 끼치므로 어렵더라도 읽어보기 바랍니다.

[2부 머신러닝 주요 모델]
머신러닝 주요 모델의 이론과 개념을 실제 적용 사례와 함께 설명합니다. 회귀, 군집화 등 머신러닝의 모델에 대해 어느 정도 알고 있지만 바탕이 되는 이론이나 적용할 수 있는 문제가 무엇인지에 대해 구체적으로 알고 싶으면 2부를 꼭 읽어보세요. 특히 8장은 실제로 이론을 적용했을 때 발생하는 다양한 문제를 해결하는 방법을 소개합니다.

- 3장 데이터와 문제
문제의 종류와 데이터에 대해 이해해야 머신러닝을 제대로 수행할 수 있습니다. 데이터와 문제의 종류를 소개하여 머신러닝으로 해결할 수 있는 문제를 이해하는 데 도움을 줍니다.

- 4장 구매 이력 데이터를 이용한 사용자 그룹 만들기
수치 항목으로 구성된 구매 이력 데이터로 사용자 그룹을 만드는 문제를 다룹니다. 수치 데이터를 이용하는 대표적인 모델인 회귀와 군집화를 좀 더 자세히 알아봅니다.

- 5장 문서 분석 시스템 만들기
문서를 분석하는 다양한 방법에 대해 설명합니다. 문서를 주어진 카테고리에 맞게 분류하는 방법, 숨겨진 토픽을 찾는 방법, 문법을 분석하는 방법, 문서에서 고유명사를 추출하는 방법 등 이
... 펼처보기

추천평

빅데이터에 이어 머신러닝은 이미 시대의 화두가 되었다. 정보 검색을 전공하고 데이터 과학자로 일해온 필자에게 이는 분명 반가운 소식이다. 머신러닝으로 모든 것을 해결할 수 있으며 해결해야 한다는 강박관념에 사로잡힌 사람을 많이 본다.『'처음 배우는 머신러닝』은 이렇게 머신러닝에 관심은 있지만 배울 기회가 없던 분들께 머신러닝의 실체에 다가갈 기회를 제공하는 책이다. 텍스트 처리에서 추천 시스템, 이미지 인식에 이르기까지 다양한 분야의 최신 기법을 다루고 있어 이미 머신러닝을 사용하는 분께도 유용하다.
복잡한 딥러닝 기법과 대용량 컴퓨팅 파워가 주류를 이루는 요즘 ‘머신러닝을 구현할 때는 기본으로 돌아가 데이터 특성을 파악하고 단순한 학습 기법에서 출발해야 한다’는 저자의 주장을 현업 데이터 과학자의 입장에서 다시 한번 강조하고 싶다.
- 김진영 PhD (스냅, 데이터 과학자, 『헬로 데이터 과학』 저자)

머신러닝에 처음 관심을 두게 된 계기는 알파고와 이세돌의 대국이었다. 이세돌이 알파고에 패하고 나서 머신러닝에 관한 강연들에 수차례 참석하고, 관련 글도 여럿 읽어보았는데, 대부분 너무 전문적이거나 그 반대로 피상적이어서 지적 갈증을 해소해주기에 역부족이었다. 그러던 차에 『처음 배우는 머신러닝』을 읽게 되었다. 도서명과도 같이 나를 비롯한 비전문가들도 별다른 배경지식 없이도 머신러닝을 체계적으로 배울 수 있게 해주는 가뭄에 단비와 같은 책이다.
- 정준혁 PhD (텍사스 A&M 대학교, 수학과 조교수)

세계적으로 머신러닝에 대한 관심이 대단한데, 그런 상황에 비해 초심자가 볼만한 책이 부족하다. 유명한 교재도 있지만 독자가 수학과 통계학 지식을 갖췄다고 전제하고, 실용적인 애플리케이션보다는 학술적인 내용에 중점을 두고 있기 때문이다. 이 책은 머신러닝을 이용하는 최신 애플리케이션들을 풍부하게 예로 들고, 수학과 통계에 대한 지식 없이도 쉽게 따라하며 머신러닝의 기본 개념을 익힐 수 있도록 쓰였다. 그런 점에서 실용적인 초심자용 교재에 대한 갈증을 크게 해소해줄 것이라 기대한다.
- 이준석 PhD (구글 리서치, 머신퍼셉션, 소프트웨어 엔지니어)

머신러닝은 이세돌 9단과 바둑을 두고, 서울시 야간버스 노선 최적화를 돕는다. 그야말로 사회 전반에 걸쳐 폭넓게 이용되고 있다. 머신러닝을 배우려는 사람은 많지만, 기존 자료는 영어로 작성된 것들이 많아서 접근성이 떨어지는 것이 현실이다. 컴퓨터공학이나 프로그래밍 혹은 통계학에 대한 지식은 있지만 머신러닝을 처음 접근하는 분들에게 실리콘밸리와 일본 현업에서 머신러닝을 사용하는 저자들이 정말 필요한 이론과 실례를 담은 이 책은 가뭄의 단비같이 시기적절한 도움을 줄 것이다. 아울러 제공하는 예제 코드는 독자분들이 만들려는 머신러닝을 이용한 애플리케이션을 만드는 데도 유용할 것이다.
- 정은진 PhD (샌프란시스코 대학교, 컴퓨터과학과 부교수)

많은 소프트웨어 서비스가 데이터를 기반으로 품질을 계속 개선해나가는 추세다. 이러한 추세에 따라 데이터를 효과적으로 활용하는 기술인 머신러닝이 더욱 중요해지고 있다. 기본 개념부터 실제 서비스 응용에 이르기까지 확실하고 쉽게 다뤄주는 이 책을 머신러닝 입문자와 현업 엔지니어 분들께 적극 추천한다!
- 유승일 PhD (구글 리서치, 소프트웨어 엔지니어)


이 책은 머신러닝 입문자들에게 필요한 개념을 친절하고 명확하게 설명한다. 기존 머신러닝 개발자들도 개념이 명확치 않을 때 챙겨볼 만한 핵심 내용을 포함한다. 일반적인 머신러닝 서적이 이론 위주인 반면, 개념 설명과 구현 예제를 곁들인 이 책은 실전에서 활약하는 개발자들에게 직접적인 도움을 줄 것이다.특히 전통적인 머신러닝에서부터 최근 열풍인 딥러닝의 활용(이미지, 자연어)까지 유기적으로 연계시킴으로써 딥러닝 입문자들이 반드시 익혀야 할 머신러닝 기법을 습득하는 데 적합하다.
- 반대현 PhD (삼성전자, 소프트웨어 R&D 센터 책임연구원)

『처음 배우는 머신러닝』은 컴퓨터공학을 전공하지 않은 초심자에게 매우 적합한 책이다. 영문에서 번역된 다른 저서들은 이해하기 다소 난해하다는 평이 있었는데 이 책은 머신러닝 관련 현업에 종사하는 한국인들이 애초에 한글로 집필했기 때문에 독자들이 내용을 받아들이기 훨씬 수월할 것이다. 책의 내용도 독자들이 이해하기 쉬운 도표, 예제, 그리고 코드를 적절히 이용해 추상적이지 않고 직관적으로 풀어서 설명되어 있다. 머신러닝을 처음 접하는 직관적인 책을 원하는 초심자에게 시원한 청량제같은 책이 될 것이라 기대한다.
- 송현오 PhD (서울대학교, 컴퓨터공학부 조교수)

석사 시절 머신러닝을 영문 교과서로 처음 접하면서 헤매었던 기억이 있다. 또한 현업에서 데이터 과학자로 일하면서 교과서의 이론과 실제 데이터 분석 사이에 간극이 있어 막막함을 느꼈던 적도 많다. 입문자의 그런 답답함을 이 책이 해소해 줄 것이다. 이 책은 복잡한 머신러닝 알고리즘과 개념을 우리말로 쉽게 설명해줄 뿐만 아니라 예제를 바탕으로 쓰여져 있어서 입문자가 쉽게 배울 수 있도록 구성되어 있다. 머신러닝 초보자로서 부딪히는 다양한 장벽도 이 책과 함께라면 지은이들의 다년간의 경험과 노하우를 얻어 실무에서 쉽게 적용해볼 수 있을 것이다.
- 노은지 (링크드인, 데이터 과학자)

머신러닝을 배우고는 싶은데 어디서부터 시작해야 할지 막막한 분들께 이 책을 추천한다. 두 저자는 머신러닝의 기본 개념부터 주요 활용 분야까지 알기 쉽게 설명하고자 많은 노력을 들여 매우 흡족한 결과가 나왔다. 특히 활용 예제가 많이 포함되어 있어서 머신러닝을 현업에서 활용하길 원하시는 분들께 좋은 참고서가 될 것이다. - 김도겸 PhD (페이스북, 연구원)

배송/반품/교환 안내

배송 안내

배송 구분 YES24 배송
포장 안내

안전하고 정확한 포장을 위해 CCTV를 설치하여 운영하고 있습니다.

고객님께 배송되는 모든 상품을 CCTV로 녹화하고 있으며, 철저한 모니터링을 통해 작업 과정에 문제가 없도록 최선을 다 하겠습니다.

목적 : 안전한 포장 관리
촬영범위 : 박스 포장 작업

  • 포장안내1
  • 포장안내2
  • 포장안내3
  • 포장안내4

반품/교환 안내

※ 상품 설명에 반품/교환과 관련한 안내가 있는경우 아래 내용보다 우선합니다. (업체 사정에 따라 달라질 수 있습니다)

반품/교환 방법 마이페이지 > 반품/교환 신청 및 조회, 1:1 문의, 고객만족센터(1544-3800), 중고샵(1566-4295)
* 판매자 배송 상품은 판매자와 반품/교환이 협의된 상품에 한해 가능합니다.
반품/교환 가능기간 출고 완료 후 10일 이내의 주문 상품
디지털 콘텐츠인 eBook의 경우 구매 후 7일 이내의 상품
중고상품의 경우 출고 완료일로부터 6일 이내의 상품 (구매확정 전 상태)
반품/교환 비용 고객의 단순변심 및 착오구매일 경우 상품 반송비용은 고객 부담임
직수입양서/직수입일서중 일부는 변심 또는 착오로 취소시 해외주문취소수수료 20%를 부과할수 있음
박스 포장은 택배 배송이 가능한 규격과 무게를 준수하며,
고객의 단순변심 및 착오구매일 경우 상품의 반송비용은 박스 당 부과됩니다.
반품/교환 불가사유 소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우 : 예) 화장품, 식품, 가전제품, 전자책 단말기 등
복제가 가능한 상품 등의 포장을 훼손한 경우 : 예) CD/LP, DVD/Blu-ray, 소프트웨어, 만화책, 잡지, 영상 화보집
소비자의 요청에 따라 개별적으로 주문 제작되는 상품의 경우
디지털 컨텐츠인 eBook, 오디오북 등을 1회 이상 다운로드를 받았을 경우
eBook 대여 상품은 대여 기간 종료, 2회 이상 대여 했을 경우 취소 불가
중고상품이 구매확정(자동 구매확정은 출고완료일로부터 7일)된 경우
시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우
전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에 해당되는 경우
소비자 피해보상 상품의 불량에 의한 반품, 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은 소비자분쟁해결기준(공정거래위원회 고시)에 준하여 처리됨
환불 지연에 따른 배상 대금 환불 및 환불 지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의 소비자 보호에 관한 법률에 따라 처리
예스이십사(주)
서울시 영등포구 은행로 11, 5층~6층(여의도동,일신빌딩) 대표 : 김기호, 김석환   개인정보보호책임자 : 한광일 privacy@yes24.com 사업자등록번호 : 229-81-37000   통신판매업신고 : 제 2005-02682호 사업자 정보확인
고객만족센터 T.1544-3800
상담 전화번호
  • 중고샵 문의 1566-4295
  • 영화예매 문의 1544-7758
  • 공연예매 문의 1544-6399
1:1 친절상담 자주 묻는 질문 상담시간 안내
YES24 수상내역 정보보호 관리체계 ISMS인증획득 개인정보보호 우수사이트
소비자피해보상보험 서울보증보험
고객님은 안전거래를 위해 현금 등으로 결제 시 저희 쇼핑몰에서 가입한 구매안전서비스를 이용하실 수 있습니다. 서비스가입사실 확인
EQUUS13