콘텐츠 바로가기
본문 바로가기


YES24 카테고리 리스트

YES24 유틸메뉴

Global YES24안내보기

Global YES24는?

K-POP/K-Drama 관련상품(음반,도서,DVD)을
영문/중문 으로 이용하실 수 있습니다.

Korean wave shopping mall, sell the
K-POP/K-Drama (CD,DVD,Blu-ray,Book) We aceept PayPal/UnionPay/Alipay
and support English/Chinese Language service

English

作为出售正规 K-POP/K-Drama 相关(CD,图书,DVD) 韩流商品的网站, 支持 中文/英文 等海外结账方式

中文

검색


어깨배너

뛰어라 우리아이
허영만 웹툰 허브 페이지
카카오뱅크 체크카드
하나멤버스 가입혜택
삼성카드 청구할인
1/6

빠른분야찾기


윙배너

마우스를 올려주세요.
바로가기 OFF
 바로가기 OFF으로
접속하셨습니다.

YES24 바로가기 설치시 특가정보 및 할인혜택을 드립니다. 바로가기 설치하기

마케팅 텍스트 배너

웹진채널예스


R로 만드는 추천 시스템
미리보기
acorn+PACKT

R로 만드는 추천 시스템

고객의 취향을 예측하는 추천 시스템 만들기

수레시 고라칼라, 미셸 우수엘리 공저 / 김동섭, 윤병도, 김현돈, 박정현 공역 | 에이콘출판사 | 2017년 07월 31일 첫번째 리뷰어가 되어주세요 | 판매지수 930 판매지수란? 공유 페이스북 공유하기 트위터 공유하기 상품퍼가기 열기/닫기
상품 가격정보
정가 18,000원
판매가 16,200 (10% 할인)
할인혜택 할인혜택
카드할인 정보
12,200원삼성카드삼성카드 (4,000원 청구할인,5만원↑)
13,200원카카오뱅크카카오뱅크 (3,000원 할인,캐시백, 3만원↑, 월1회)
13,200원BC체크카드 BC체크카드 (3,000원 할인,쿠폰, 3만원↑)
15,700원페이코페이코 (500원 할인,3천원↑, 최대3회)
YES포인트
추가혜택쿠폰 및 사은품(1종)
추가혜택쿠폰 쿠폰받기
  • 주문금액대별 할인쿠폰
구매 시 참고사항
구매 시 참고사항

판매중

수량
배송비 : 무료 배송비 안내
  • 해외배송 가능
  • 최저가 보상

상품정보

출간일 2017년 07월 31일
쪽수,무게,크기 196쪽 | 498g | 188*235*20mm
ISBN13 9791161750309
ISBN10 1161750304

이 상품과 관련 있는 이벤트 2

선착순 사은품 [대학생취준생] #여름방학 #시험 #취업 #스펙업 새창 수험서/국어외국어/IT모바일/대학교재 구매 금액별 사은품 증정 이벤트 기간 : 2017년 07월 03일 ~ 2017년 08월 21일

사은품 YES24가 준비한 8월의 두 번째 선물 새창 국내도서/외국도서/eBook/중고샵 직배송 도서
4만원 이상 포켓몬 비치볼
5만원 이상 북마크볼펜&스티키노트or샤워볼or북커버or제습기 중 택1(포인트차감)
이벤트 기간 : 2017년 08월 14일 ~ 2017년 08월 31일

책소개

넷플릭스, 애플 뮤직, 아마존은 어떻게 나의 취향을 정확히 파악했을까? 빅데이터 시대에 들어서 기업들은 날로 정교하게 고객의 취향을 파악하려 노력한다. 정보의 홍수 속에 고객이 원하는 것을 가장 빠르고 쉽게 찾게끔 돕는 것은 이제 선택이 아니라 필수가 됐다. 이 책은 최근 가장 각광받는 언어이자 오픈소스 프로그램인 R을 이용해 추천 시스템을 설명한다. 책을 따라 추천 시스템의 기법, 성능평가, 실제 실습의 과정을 지나고 나면 어느새 아마존이 어떻게 나의 취향을 파악하고 있는지, 우리는 고객에게 어떻게 상품을 추천해줘야 하는지를 차츰 이해하게 될 것이다.


저자 소개

저자 : 수레시 고라칼라(Suresh K. Gorakala)

데이터 분석가이자 데이터 마이닝, 빅데이터 분석, 시각화 도구 전문 컨설턴트며 2013년부터 자신의 블로그에 데이터 과학에 관한 글을 쓰고 있는 블로거다(http://www.dataperspective.info).
인도 안드라대학교(Andhra University)의 SRKR 공과대학(SRKR Engineering College)에서 기계공학 학사 학위를 취득했고 데이터 도구 제작과 아이디어 창출, 교육, 사진, 여행을 좋아한다.

저자 : 미셸 우수엘리(Michele Usuelli)

대용량 데이터 및 머신 러닝 분야의 전문 데이터 과학자이자 작가며, R의 열성적인 팬이다. 현재 2015년 4월 마이크로소프트가 인수한 R 기반 기업인 레볼루션 애널리틱스(Revolution Analytics)에서 근무하고 있다. 수학공학을 전공했으며 과거에는 빅데이터 스타트업과 출판사에서 일했다. 팩트출판사에서 펴낸 『R Machine Learning Essentials』(2014)의 저자이기도 하다.

목차

김동섭
경북대학교에서 지능형 에이전트로 석사 학위를 받았다. 2006년부터 수년간 일본 동경에 있는 ORIX 그룹(ORIX Group), NTT COMWARE, 캐논 마케팅 재팬(Canon Marketing Japan)에서 시스템 분석 및 설계, 개발 업무를 담당했고 현재는 NHN Technology Services에 재직 중이다. 번역서로는 『PHP+MySQL 웹 개발 마스터 북』(남가람북스, 2016)이 있다. 홈페이지(http://www.abreqadhabra.com)를 운영한다.

윤병도
숭실대학교에서 경영학 학사를 취득했으며, 이후 한국방송통신대 정보통계학과에 편입해 통계학과 컴퓨터공학을 수학 중이다. 참좋은여행에서 여행 상품 추천 시스템 모형 설계, 데이터 기반 상품 분석, 고객 정보 통합 업무 등을 담당했고, 현재는 쿠팡 여행사업부에서 분석가로 재직 중이다. 자율형 연구소인 '모두의연구소'에 추천 시스템 연구실을 만들어 운영하고 있다.

김현돈
일본 국비(문부성) 장학생으로 교토대학교(Kyoto University)에서 로봇 청각 시스템으로 박사 학위를 취득했다. 이후 4년간 LG전자 전자기술원 미래IT융합연구소에서 가전 및 휴대폰에 사용되는 음성 인식 시스템의 전처리 기술 연구 및 상용화 개발을 담당했다. 현
... 펼처보기


1장. 추천 시스템 시작하기
__추천 시스템의 이해
__이 책의 구성
__협업 필터링 추천 시스템
__콘텐츠 기반 추천 시스템
__지식 기반 추천 시스템
__하이브리드 시스템
__평가 기법
__사례 연구
__다음 단계
__요약


2장. 추천 시스템에서 사용되는 데이터 마이닝 기법
__데이터 분석 문제 해결하기
__데이터 전처리 기법
____유사도 측정
______유클리디안 거리
______코사인 거리
______피어슨 상관 계수
____차원 축소
______주성분 분석
__데이터 마이닝 기법
__클러스터링 분석
____K-평균 클러스터링
______서포트 벡터 머신
__의사결정 나무
__앙상블 기법
____배깅
____랜덤 포레스트
____부스팅
__데이터 마이닝 알고리즘 평가
__요약


3장. 추천 시스템
__추천 시스템을 위한 R 패키지: recommenderlab
____데이터 세트
______Jester5k, MSWeb, MovieLense
____평점 매트릭스를 위한 클래스
____유사도 매트릭스 계산
____추천 모델
__데이터 탐구
____데이터 특징 탐구
____평점 값 탐구
____조회된 영화 탐색
____평균 평점 탐색
____매트릭스 시각화
__데이터 준비
____가장 적절한 데이터 선택하기
... 펼처보기


출판사 리뷰

이 책에서 다루는 내용

* 추천 시스템의 핵심 이해
* 다양한 데이터 마이닝 기법과 데이터 처리 방법
* 추천 알고리즘의 최적화 및 평가
* 추천 모형 설계를 위한 데이터 구조화 등의 준비 작업
* R의 직접 실행을 통한 추천 시스템 기법별 차이
* 추천 시스템에 쓰이는 다양한 평가 기법
* R의 대표적인 추천 시스템 패키지인 recommenderlab에 대한 소개와 고성능의 추천 시스템을 만들기 위한 최적화 방법

이 책의 대상 독자

이 책은 R과 머신 러닝에 대한 배경지식을 가진 사람들을 대상으로 한다. 추천 시스템을 만들어보고 싶었다면 이 책이 적합할 것이다.


이 책의 구성

1장. '추천 시스템 시작하기'에서는 이 책의 구성을 설명하고 추천 시스템의 실제 적용 사례를 알아본다.
2장. '추천 시스템에서 사용되는 데이터 마이닝 기법'에서는 추천 모델을 만드는 데 필요한 R의 기초를 살펴보고 데이터 처리와 머신 러닝 기법들을 알아본다.
3장. '추천 시스템'에서는 많이 사용되는 몇 가지 추천 시스템들을 설명하고 R을 사용해 어떻게 만드는지 알아본다.
4장. '추천 시스템의 평가'에서는 추천 시스템의 성능을 평가하고 최적화하는 방법을 알아본다.
5장. '사례 연구: 나만의 추천 시스템 만들기'에서는 비즈니스 과제를 해결하기 위해 어떻게 추천 시스템을 만들고 최적화하는지 알아본다.


지은이의 말

추천 시스템은 사용자 구매와 선호도를 예측하는 머신 러닝(Machine Learning) 기법이다. 이러한 추천 시스템은 온라인 쇼핑 사이트나 동영상 공유 사이트에 여러 형태로 적용돼 있다.
이 책은 R을 사용해 어떻게 추천 시스템을 만드는지 보여준다. 먼저 추천 시스템에 관련된 데이터 마이닝(Data Mining)과 머신 러닝 개념을 살펴본다. 그런 다음 R을 사용해 추천 모델을 만들고 최적화하는 방법과 가장 많이 사용되는 추천 기법에 대한 개요를 설명한다. 마지막으로, 추천 시스템을 만드는 실용적인 사용 사례를 보여준다. 이 책을 읽고 나면, 자신만의 추천 시스템을 만드는 방법을 알게 될 것이다.

옮긴이의 말

이 책은 자율형 연구소인 모두의연구소에서 추천 시스템을 연구해 얻은 첫 결과물이다. 이 책은 부담 없는 분량으로 추천 시스템 전반에 대한 내용을 포괄적으로 담고 있어 입문자가 보기에 적당하다. 다만, 머신 러닝에 대한 이론 부분은 저자가 한정된 지면에 많은 내
... 펼처보기

반품/교환 안내

※ 상품 설명에 반품/교환과 관련한 안내가 있는경우 아래 내용보다 우선합니다. (업체 사정에 따라 달라질 수 있습니다)

반품/교환 방법 마이페이지 > 반품/교환 신청 및 조회, 1:1 문의, 고객만족센터(1544-3800)
반품/교환 가능기간 출고 완료후 10일 이내의 주문 상품
디지털 콘텐츠인 eBook의 경우 구매 후 7일 이내의 상품
반품/교환 비용 고객의 단순변심 및 착오구매일 경우 상품 반송비용은 고객 부담임
직수입양서/직수입일서중 일부는 변심 또는 착오로 취소시 해외주문취소수수료 20%를 부과할수 있음
반품/교환 불가사유 소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우 : 예) 화장품, 식품, 가전제품, 전자책 단말기 등
복제가 가능한 상품 등의 포장을 훼손한 경우 : 예) CD/LP, DVD/Blu-ray, 소프트웨어, 만화책, 잡지, 영상 화보집
소비자의 요청에 따라 개별적으로 주문 제작되는 상품의 경우
디지털 컨텐츠인 eBook, 오디오북 등을 1회 이상 다운로드를 받았을 경우
eBook 대여 상품은 대여 기간 종료, 2회 이상 대여 했을 경우 취소 불가
시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우
전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에 해당되는 경우
소비자 피해보상 상품의 불량에 의한 반품, 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은 소비자분쟁해결기준(공정거래위원회 고시)에 준하여 처리됨
환불 지연에 따른 배상 대금 환불 및 환불 지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의 소비자 보호에 관한 법률에 따라 처리
예스이십사(주)
서울시 영등포구 은행로 11, 5층~6층(여의도동,일신빌딩) 대표 : 김기호, 김석환   개인정보보호책임자 : 한광일 privacy@yes24.com 사업자등록번호 : 229-81-37000   통신판매업신고 : 제 2005-02682호 사업자 정보확인
고객만족센터 T.1544-3800
상담 전화번호
  • 중고샵 문의 1566-4295
  • 영화예매 문의 1544-7758
  • 공연예매 문의 1544-6399
1:1 친절상담 자주 묻는 질문 상담시간 안내
YES24 수상내역 정보보호 관리체계 ISMS인증획득 개인정보보호 우수사이트
소비자피해보상보험 서울보증보험
고객님은 안전거래를 위해 현금 등으로 결제 시 저희 쇼핑몰에서 가입한 구매안전서비스를 이용하실 수 있습니다. 서비스가입사실 확인
EQUUS14