콘텐츠 바로가기
본문 바로가기


YES24 카테고리 리스트

YES24 유틸메뉴

Global YES24안내보기

Global YES24는?

K-POP/K-Drama 관련상품(음반,도서,DVD)을
영문/중문 으로 이용하실 수 있습니다.

Korean wave shopping mall, sell the
K-POP/K-Drama (CD,DVD,Blu-ray,Book) We aceept PayPal/UnionPay/Alipay
and support English/Chinese Language service

English

作为出售正规 K-POP/K-Drama 相关(CD,图书,DVD) 韩流商品的网站, 支持 中文/英文 等海外结账方式

中文

검색


어깨배너

11월 전사 이벤트
디뮤지엄 전시 초대 이벤트
주말 이벤트
미키 90주년 퍼즐 증정 이벤트
편의점픽업 500P 적립
출간전연재 이벤트
1/6

빠른분야찾기


윙배너

마우스를 올려주세요.

마케팅 텍스트 배너

웹진채널예스


텐서플로로 시작하는 딥러닝
미리보기
소득공제 I♥A.I.-05

텐서플로로 시작하는 딥러닝

합성곱 신경망 중심의 딥러닝 알고리즘

나카이 에츠지 저 / 진명조 | 제이펍 | 2017년 07월 12일 | 원서 : TensorFlowで?ぶディ?プラ?ニング入門 첫번째 리뷰어가 되어주세요 | 판매지수 2220 판매지수란? 공유 페이스북 공유하기 트위터 공유하기 상품퍼가기 열기/닫기
상품 가격정보
정가 24,000원
판매가 21,600 (10% 할인)
YES포인트
결제혜택
결제혜택 카드/간편결제 혜택을 확인하세요 카드/간편결제 혜택 보기/감추기
카드할인 정보
네이버페이 네이버페이 네이버페이 1% 적립 (1% 적립) 자세히 보기
페이코포인트 페이코포인트 1.2% 적립 (건당 1만P 이내) 자세히 보기
구매 시 참고사항
구매 시 참고사항

판매중

수량
배송비 : 무료 배송비 안내
  • 해외배송 가능
  • 최저가 보상
  • 문화비소득공제 신청가능

상품정보

출간일 2017년 07월 12일
쪽수,무게,크기 256쪽 | 532g | 188*245*20mm
ISBN13 9791185890876
ISBN10 1185890874

이 상품과 관련 있는 이벤트 2

사은품 기획전 [대학생취준생] 다시 한 번 힘을 모아, 합격 기원! 새창 수험서/외국어/대학교재/IT모바일 분야 3만원 이상 구매 시 반투명 포스트잇 / 5만원 이상 구매 시 스탠딩 클립보드 증정 (포인트 차감) 이벤트 기간 : 2018년 10월 15일 ~ 2018년 11월 30일

기획전 제16회 독자 선정 올해의 책 2018 투표 새창 2018 올해의 책과 커버에 투표하시면, 회원에 한해 1천원 상품권을 증정합니다.
올해의 책 전시회에도 초대합니다.
이벤트 기간 : 2018년 11월 05일 ~ 2018년 12월 06일

이 상품이 포함된 특별 구성

딥러닝 세트 딥러닝 세트 심효섭 | 제이펍 | 2017년 8월 47,000원 →42,300원(10% 할인) | YES포인트 YES포인트 2,350원(5% 지급) 특별 구성 세트 카트에 넣기

책소개

텐서플로를 이용하여 ‘합성곱 신경망(CNN)’의 구조를 완벽히 이해한다!

이 책은 머신러닝과 데이터 분석을 제대로 배운 적이 없는 개발자를 대상으로 한다. 딥러닝의 대표적 예인 ‘합성곱 신경망(CNN)’의 구조를 근본부터 이해하고, 텐서플로를 이용해 실제로 동작하는 코드를 작성하는 것이 이 책의 목표다. 그리고 다수의 뉴런이 여러 층 결합된 ‘다층 신경망’ 내에서 대체 무슨 일이 일어나는지, 딥러닝 알고리즘은 어떤 원리로 학습하는지를 알려 준다.

딥러닝의 밑바닥에는 머신러닝의 원리가 있는데, 간단한 행렬 계산과 기초적인 미분을 알면 그 구조를 이해하기가 그리 어렵지 않다. 이 책은 필기 문자를 인식하도록 처리하는 합성곱 신경망에 대해, 그리고 이를 구성하는 각 요소의 역할을 신중하게 설명한다. 또한, 딥러닝의 대표 라이브러리인 텐서플로를 이용해 실제로 동작하는 코드를 보여줌으로써 각 요소의 동작 원리를 확인할 수 있도록 구성되어 있다. 레고 블록을 끼워 맞추듯이 네트워크 구성 요소를 늘려 감으로써 인식 정확도가 향상되는 모습을 관찰할 수 있을 것이다.

부디 이 책을 통해 딥러닝의 근본 원리를 이해하고 텐서플로 코드 작성법을 학습하여 다음 단계로 도약하는 계기가 되길 바란다.


저자 소개

저자 : 나카이 에츠지(中井 ?司)

1971년 4월 오사카에서 태어났다. 노벨 물리학상을 타고 싶어서 이론물리학 연구에 몰두하며 학창시절을 보냈다. 그리고 대학 입시학원 강사 등 여러 직업을 거쳐 외국계 기업의 리눅스 엔지니어로서 유닉스/리눅스 서버와 인생을 함께하게 되었다. 리눅스 에반젤리스트를 거쳐 현재는 대형 검색 시스템 기업에서 클라우드 및 솔루션 아키텍터로 일하고 있다.
휴일에는 사랑스러운 초등학생 딸과 스포츠 센터에 수영하러 다니는 ‘좋은 아빠’로 동네에서 유명하다. ‘세계 평화’를 위해 일찍 집에 들어가려고 애쓰면서도 가끔은 각별히 사랑하는 변두리 선술집에 자신도 모르게 들르기도 한다. 요즘에는 머신러닝 이론을 비롯한 데이터 활용 기술에 관한 기초 지식을 세상에 널리 알리기 위해 강연 활동 및 잡지 기고나 서적 집필에도 주력하고 있다.

역자 : 진명조

현재 씨디네트웍스에 근무하고 있으며, 『서버/인프라 엔지니어를 위한 DevOps』, 『서버/인프라를 지탱하는 기술』, 『파이썬 더 쉽게, 더 깊게』, 『대규모 서비스를 지탱하는 기술』, 『클라우드의 충격』, 『인프라 엔지니어의 교과서: 시스템 구축과 관리편』을 포함하여 13종의 기술 서적을 번역하였다. IT 산업의 미시적인 영역과 거시적인 영역을 아우르는 통찰력을 갖게 되기를 꿈꾸고 있으며, 최근에는 머신러닝을 비롯한 인공지능(AI)의 대중화에 주목하고 있다.

목차

1.
CHAPTER 1 텐서플로 입문 1
1.1 딥러닝과 텐서플로 4
1.1.1 머신러닝의 개념 4
1.1.2 신경망의 필요성 7
1.1.3 딥러닝의 특징 13
1.1.4 텐서플로를 이용한 파라미터 최적화 16
1.2 환경 준비 24
1.2.1 CentOS 7에서의 준비 과정 25
1.2.2 주피터 사용법 28
1.3 텐서플로 훑어보기 33
1.3.1 다차원 배열을 이용한 모델 표현 33
1.3.2 텐서플로 코드를 이용한 표현 35
1.3.3 세션을 이용한 트레이닝 실행 39

CHAPTER 2 분류 알고리즘의 기초 47
2.1 로지스틱 회귀를 이용한 이항 분류기 49
2.1.1 확률을 이용한 오차 평가 49
2.1.2 텐서플로를 이용한 최우추정 실행 54
2.1.3 테스트 세트를 이용한 검증 65
2.2 소프트맥스 함수와 다항 분류기 69
2.2.1 선형 다항 분류기의 구조 69
2.2.2 소프트맥스 함수를 이용한 확률로의 변환 73
2.3 다항 분류기를 이용한 필기 문자 분류 76
2.3.1 MNIST 데이터 세트 이용 방법 76
2.3.2 이미지 데이터의 분류 알고리즘 79
2.3.3 텐서플로를 이용한 트레이닝 실행 84
2.3.4 미니 배치와 확률적 경사 하강법 90

CHAPTER 3 신
... 펼처보기

책속으로

딥러닝이 세상의 주목을 받기 시작한 것은 “신경망이 이미지를 인식했다”라고 구글이 발표할 무렵부터입니다. 그후 DQN(Deep Q-Network)이라는 알고리즘이 비디오 게임 제어를 학습하고, 나아가 신경망을 이용한 머신러닝 시스템이 바둑 세계 챔피언을 이기는 등 놀라운 결과를 만들어 내고 있습니다. 그리고 이러한 딥러닝의 해설 기사에 반드시 등장하는 것이 바로 다수의 뉴런이 여러 층 결합된 ‘다층 신경망’을 도식화한 그림입니다. 이 신경망 내에서 대체 무슨 일이 일어나는 것인지, 딥러닝 알고리즘은 어떤 원리로 학습하는 것인지를 ‘어떻게 해서든 이해하고 싶다!’라고 느끼는 여러분이 바로 이 책의 대상 독자입니다.
--- p.viii

딥러닝은 ‘심층학습’이라고도 하며, 용어만 보면 뭔가 심오한 이론인 것처럼 느껴진다. 그러나 기본적으로는 앞서 그림 1 - 11과 같은 다층 신경망을 이용한 머신러닝에 지나지 않는다. 다만, 단순히 계층을 증가시켜 복잡화하는 것이 아니라 해결해야 할 문제에 맞게 각각의 노드에 특별한 역할을 부여하거나 노드 간의 연결 방식을 다양하게 연구한 것이다. 무조건 노드를 증가시켜 복잡화하는 것이 아니라 각 노드의 역
... 펼처보기 --- p.179

배송/반품/교환 안내

배송 안내

배송 구분 YES24 배송
포장 안내

안전하고 정확한 포장을 위해 CCTV를 설치하여 운영하고 있습니다.

고객님께 배송되는 모든 상품을 CCTV로 녹화하고 있으며, 철저한 모니터링을 통해 작업 과정에 문제가 없도록 최선을 다 하겠습니다.

목적 : 안전한 포장 관리
촬영범위 : 박스 포장 작업

  • 포장안내1
  • 포장안내2
  • 포장안내3
  • 포장안내4

반품/교환 안내

※ 상품 설명에 반품/교환과 관련한 안내가 있는경우 아래 내용보다 우선합니다. (업체 사정에 따라 달라질 수 있습니다)

반품/교환 방법 마이페이지 > 반품/교환 신청 및 조회, 1:1 문의, 고객만족센터(1544-3800), 중고샵(1566-4295)
* 판매자 배송 상품은 판매자와 반품/교환이 협의된 상품에 한해 가능합니다.
반품/교환 가능기간 출고 완료 후 10일 이내의 주문 상품
디지털 콘텐츠인 eBook의 경우 구매 후 7일 이내의 상품
중고상품의 경우 출고 완료일로부터 6일 이내의 상품 (구매확정 전 상태)
반품/교환 비용 고객의 단순변심 및 착오구매일 경우 상품 반송비용은 고객 부담임
직수입양서/직수입일서중 일부는 변심 또는 착오로 취소시 해외주문취소수수료 20%를 부과할수 있음
박스 포장은 택배 배송이 가능한 규격과 무게를 준수하며,
고객의 단순변심 및 착오구매일 경우 상품의 반송비용은 박스 당 부과됩니다.
반품/교환 불가사유 소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우 : 예) 화장품, 식품, 가전제품, 전자책 단말기 등
복제가 가능한 상품 등의 포장을 훼손한 경우 : 예) CD/LP, DVD/Blu-ray, 소프트웨어, 만화책, 잡지, 영상 화보집
소비자의 요청에 따라 개별적으로 주문 제작되는 상품의 경우
디지털 컨텐츠인 eBook, 오디오북 등을 1회 이상 다운로드를 받았을 경우
eBook 대여 상품은 대여 기간 종료, 2회 이상 대여 했을 경우 취소 불가
중고상품이 구매확정(자동 구매확정은 출고완료일로부터 7일)된 경우
시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우
전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에 해당되는 경우
소비자 피해보상 상품의 불량에 의한 반품, 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은 소비자분쟁해결기준(공정거래위원회 고시)에 준하여 처리됨
환불 지연에 따른 배상 대금 환불 및 환불 지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의 소비자 보호에 관한 법률에 따라 처리
예스이십사(주)
서울시 영등포구 은행로 11, 5층~6층(여의도동,일신빌딩) 대표 : 김석환   개인정보보호책임자 : 한광일 privacy@yes24.com 사업자등록번호 : 229-81-37000   통신판매업신고 : 제 2005-02682호 사업자 정보확인
고객만족센터 T.1544-3800
상담 전화번호
  • 중고샵 문의 1566-4295
  • 영화예매 문의 1544-7758
  • 공연예매 문의 1544-6399
1:1 친절상담 자주 묻는 질문 상담시간 안내
YES24 수상내역 정보보호 관리체계 ISMS인증획득 개인정보보호 우수사이트
소비자피해보상보험 서울보증보험
고객님은 안전거래를 위해 현금 등으로 결제 시 저희 쇼핑몰에서 가입한 구매안전서비스를 이용하실 수 있습니다. 서비스가입사실 확인
EQUUS7